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One version of the matrix method, combination of the analytic representation of wavefunctions 
and the HEG scheme (J. Chem. Phys. 43, 1515 (1965)) was used to calculate the vibration-rotational 
wavefunctions and infra-red transition moments of OH A 2E+ state. Besides introducing this method 
as an alternative to the numerical integration method, it is shown in this report that the calculated 
transition moments are virtually independent ofthe nonlinear parameters of the basis functions. This, 
makes optimization of the parameters unnecessary and facilitates its application. The method is also 
shown to be very reliable. 
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1. Introduction 

Recent  years have seen several examples of  sophisticated ab initio calculation 
o f  the vibrat ional  transit ion moments  for dia tomic molecules. Those a m o n g  the 
latest are the works on LiH by Docken  and Hinze [1], on the X Z H  state o f  the 
radical O H  by Mies [2] and another  work  on the same radical by Chu  et al. [3]. 
In these calculations, the radial equat ion for the nuclear mot ion  is solved numeri-  
cally and the resultant wavefunctions are used to compute  the transit ion moments ,  
also by the numerical  integrat ion method.  The numerical  process is generally 
accurate but its intermediate results, such as the vibrat ional  wavefunctions,  are 
extremely cumbersome for handling. Since the knowledge of  the vibrational  
transit ion probabil i ty is needed more  and more  in various aspects o f  as t ronomy,  
chemical physics and their related technologies, it is impor tan t  that  more  practical 
ways o f  comput ing  these quantities be explored. Th i s  is the purpose  o f  the present 
study. 

All methods  o f  solving eigenvalue equation based on the variational principle 
and expansion o f  the eigenfunctions in a basis set can be broadly called the matrix 
method.  Shore [4] has conducted an analysis of  the method  as applied to the 
calculation o f  the molecular  vibrat ion and also summarized several versions o f  the 
method  found a m o n g  the literature. However,  these papers are all concerned with 
the methodological  aspects o f  the matrix method  [5] and the efforts to exploit 
its potential  are peculiarly scarce. The present au thor  has applied the method  to a 
molecular  state characterized by a double -min imum potential  energy curve [6]. 
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He also successfully adapted the method to the calculation of the Franck-Condon 
factors [7]. 

Because of its nature, the matrix method can be expected to be even better 
suited for the computation of the vibrational transition probability. This paper 
presents the results of a study on the A zS+ state of the radical OH. 

2. Method 

One-dimensional vibrational wavefunction $(v, J)  is expanded in terms of a 
set of orthonormal analytic functions {~b n (~, fi)} where c~ and fl are parameters. 

~(v, J ) = ~ ,  e, (v, J) ~b. (~,/~) (1) 
n 

The coefficients c. (v, J) are obtained from the diagonalization of the Hamiltonian 
matrix H defined by 

H =  T +  V (2) 

where 

(T)k, = (4~kl -- (2m)- *dZ/dR 2 i~b, ) (3) 

(V)k , = (~bkl V(R)I4),) (4) 

V(R) = U(R) + [ J ( J+  1) -A2] /2mR 2. (5) 

In these equations, m stands for the reduced mass, R the internuclear distance, 
U(R) indicates the potential energy, J the total angular momentum and A is the 
axial component of the electronic angular momentum. 

The key step of the method used in this work is the evaluation of the matrix V. 
A scheme devised by Harris et al. [-8] (HEG scheme) enables one to use potential 
function U(R) in any form, including R K R  or ab initio potential, in this conjunc- 
tion. In the HEG scheme one first diagonalizes the matrix R = (q~k[R[q~) obtaining 
a set of eigenvalues {R~} : 

R', = (U- * RU),,  (6) 

where U is an orthogonal transformation. One can then apply a suitable translation 
of the origin to define a new set of eigenvalues {R,} related to the set {R~} by 

R, = (C+  R;)~- 1/2 (7) 

where C is a constant. For the reason to be given later it is advantageous to choose 
the constant C such that the minimum of the new set {R,}, Rmin, is always a small 
positive number. V(R, )  evaluated at R = R, and with a specific value of J is substi- 
tuted for the corresponding diagonal element R; to form a diagonal matrix V n: 

V(R,)  ~ R;  ; (V~), ,  = V(RO. (8) 

The desired matrix V is then given by the inverse transformation: 

V =  U V  d U -  1. (9) 
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Hamiltonian matrix H is formed and diagonalized to yield vibrational energy 
eigenvalues and eigenfunctions. 

Let/~(R) be the dipole moment of the system. The steps prescribed in Eqs.(8) 
and (9) are repeated to give the matrix D : 

where 

p(R.) ~ R~; (D%. --~(R.) (10) 

D = U D  d U -1 ( l l )  

(D)kz = (~bk]#(R)lq~). (12) 

The vibrational transition moment M(v", J" --~ v', J') is then given by 

M(v", J" -~ v', J') = ( ~(v", J")I#(R)IT(v', J') ) 
= C*(v", f ' )  DC(v', f )  (13) 

where C*(v", J") is a row vector whose elements are the expansion coefficients of 
~(v", s"). 

3. Calculation and Results 

It  is self-evident that the vibrational wavefunctions and hence the transition 
moments can not be calculated with higher certainty and accuracy than those of 
the potential energy curve and the dipole moment function used in the calculation. 
Therefore, to avoid any further complication, one should select for test cases those 
systems for which both U(R) and /~(R) are known with a high certainty, if not 
accuracy, over a wide range of R. For this reason, the A 2Z+ state of the radical OH 
is considered in this study since a fairly complete work on this system has recently 
been published [3]. 

3.1. Vibrational Eiyenvalues and Eigenfunctions 

In all computations reported in this paper the vibrational wavefunctions are 
expanded over a basis set comprising the first 60 harmonic oscillator eigenfunctions 
~.(~, Ro) 

q~,(~, Ro)= (~/n) 1/4 (l/2"n !)l/2H,(() exp(-42/2)  (14) 

with 
= ~l/2(R -- Ro) 

and H,(O is an Hermite polynomial. Choice of the parameters ~ and R0 has been 
discussed in full detail elsewhere [4-7]. 

The ab initio potential energy and dipole moment of OH computed by Chu 
et al. [3] were fitted to cubic equations of R for interpolation in connection with 
Eqs.(8) and (10). Calculations were carried out for various values of ~ ranging 
from 8.5 to 25.0. It has been demonstrated previously [7] that with a 60-term 
expansion the resultant eigenvalues and eigenfunctions are for most part sufficiently 
stationary against the variation of ~ and R o as to render the choice of these para- 
meters noncrucial. Hence, only the results of a representative case, c~= 16.0, are 
given. 



74 C. S. Lin 

Table 1. Some Spectroscopic Parameters (in cm- 1) OH A 2Z+ 

AGv+ a/2 By D~ x 10 3 

Chu this expt. b Chu this expt. c 
et al. work a et al. work 

Chu this expt. c 
et al. work 

0 2986 2987.3 2988.6 17.04 1 7 . 0 5  16.96 
1 2774 2774.0 2793.0 16.15 1 6 . 1 4  16.13 
2 2572 2575.3  2593.5 15.29 1 5 . 2 9  15.28 
3 2350 2354.3  2385.5 14.40 1 4 . 4 0  14.42 
4 2079 2071.0 13.41 13.40 

2.08 2.079 2.039 
2.09 2.082 2.024 
2.07 2.055 2.027 
2.13 2.096 2.067 
2.35 2.433 

a C~ = 16.0, J=0.5. Potential curve from Chu et al. : J. Chem. Phys. 61, 5389 (1974) 
b Carlone,C., Dalby0F.W. : Can. J. Phys. 47, 1945 (1969) 

Moore,E.A., Richards,W.G. :Phys. Scr. 3, 223 (1971) 

M o l e c u l a r  ene rgy  level  ev, s is wr i t t en  as 

ev, J = ~v + J ( J +  1)By _ j 2 ( j +  l )2Dv (15) 

w h e r e  ev ind ica tes  the  v i b r a t i o n a l  t e rm.  R o t a t i o n a l  c o n s t a n t s  By a n d  D~ a re  c o m -  

p u t e d  f r o m  th ree  va lues  o f  e ~ , j  w i t h  J = 0 . 5 ,  1.5 a n d  2.5. 

3.2 .  T r a n s i t i o n  M o m e n t s  

Since  the  m a t r i x  R has  a l r e a d y  been  d i a g o n a l i z e d  whi l e  c o m p u t i n g  the  m o l e c u l a r  

energy ,  the  c a l c u l a t i o n  o f  the  m a t r i x  D in Eq . (11)  r equ i r e s  on ly  i n t e r p o l a t i o n s  o f  

p (R)  a n d  m u l t i p l i c a t i o n  o f  th ree  mat r ices .  Eq. (13)  t h e n  gives the  t r an s i t i on  

m o m e n t .  

T a b l e  2 p resen t s  the  v i b r a t i o n a l l y - a v e r a g e d  d i p o l e  m o m e n t  o f  all c a l cu l a t ed  

b o u n d  levels  (v = 0 - 8 )  ve rsus  the  p a r a m e t e r  ~ r a n g i n g  f r o m  e =  8.5 to  c~ = 2 5 . 0 .  It  

is o b v i o u s  f r o m  this  t ab le  t ha t  excep t  the  h ighes t  b o u n d  state ,  the  v i b r a t i o n a l l y -  

a v e r a g e d  d i p o l e  m o m e n t s  r e m a i n ,  for  all p r ac t i ca l  p u r p o s e s ,  v i r t ua l l y  c o n s t a n t  

aga ins t  ~. 

T a b l e  2. a (0(V, J)I/~(R)IO(V, 3)) versus c~ OH A2Z  + 

v•c• 8.5 10.0 12.0 16.0 25.0 

0 0.7375 0.7377 0.7377 0.7376 0.7376 
1 0.7749 0.7749 0.7749 0.7750 0.7749 
2 0.7994 0.7993 0 . 7 9 9 3  0 . 7 9 9 3  0.7993 
3 0.8116 0.8119 0.8117 0.8117 0.8118 
4 0.8072 0.8069 0.8068 0.8068 0.8069 
5 0.7751 0.7749 0.7748 0 . 7 7 4 8  0.7748 
6 0.7000 0 . 7 0 0 1  0 . 7 0 0 1  0.7000 0.7000 
7 0.5501 0.5502 0.5505 0.5505 0.5516 
8 b 0.2916 0.2916 0.2923 0 . 2 9 5 5  0.3780 

a J=0.5. All entries in a.u. 
b Ten bound states are experimentally established. However, the 

ab initio potential contains only nine bound states. See also Chu 
et al. : J. Chem. Phys. 61, 5389 (1974) 
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Table 3, Calculated transition moments" vs. e-lp(v, J =  0.5) --* ~b(v + Av, J =  1.5) OH A 2Z+ 

A v =  l A v =  2 Av = 3 

v 10.0 12.0 16,0 10.0 12.0 16.0 10.0 12.0 16.0 

0 0.0827 0.0827 0.0827 0,0205 0.0205 0.0205 0.0031 0.0031 0.0031 
1 0.1037 0.1037 0.1037 0.0377 0.0377 0.0377 0.0078 0.0078 0.0078 
2 0.1059 0.1060 0,1060 0.0558 0.0558 0.0558 0.0155 0.0154 0.0t54 
3 0.09t0 0.0911 0,0911 0.0739 0.0739 0.0739 0.0277 0.0277 0.0277 
4 0.0552 0.0553 0,0552 0.0859 0.0860 0.0860 0.0443 0,0443 0,0443 
5 0.0055 0,0054 0,0054 0.0753 0.0755 0.0756 0.0481 0,0482 0.0486 
6 0.0870 0.0867 0.0866 0.0174 0,0176 0.0179 ~ . . . .  
7 0.1486 0.1486 0.1496 b . . . . .  

" For convenience, absolute values (in a.u.) of the moments are listed, 
b Since only nine bound states are contained in the ab init io potential these are not defined. 

Table 3 shows part of the R-branch (J"=0.5 ~ J '= l . 5 )  of the transition 
moment matrix M. 

4. Discussion 

While the theoretical potential curve of Chu et al. [3] should not be far from 
the limit of accuracy an ab initio calculation on a system of this size can normally 
attain at the present time, it is still considerably different from the RKR poten- 
tial [9]. As can be seen in Table 1, the calculated vibrational quanta ~~189 
show a rapidly increasing deviation from the experimental results with the quantum 
number v. Moreover, the ab initio potential is found, both in this calculation and 
in the work of Chu et al., [3] to accommodate nine bound levels as compared to 
ten as experimentally determined. 

Since an ab initio potential is used, and the aim of this work is to test the matrix 
method, it is meaningful only to compare the results of the present calculation 
with those of the numerical integration method. As one can clearly see in Table 1, 
the agreement between the results of these two methods is generally very satis- 
factory. One also notices, at a closer inspection, that the agreement is considerably 
better for the rotational levels than for the vibrational quanta. This latter point 
is explained in the following paragraph. 

As defined in Eq.(5), the potential function V(R) for the vibration-rotation 
motion consists of the purely vibrational part U(R) and rotational part [J(J+ 1)-  
A2]/2mR 2. In setting up the matrix V a defined in Eq.(8), one evaluates U(Rn) 
by interpolation and adds the rotational part, evaluated by a simple substitution 
of R by the value R,. In the numerical integration procedure, one also interpolates 
U(R) at every integration step and computes the rotational part by a simple 
substitution. This is the only step in both methods where vibration and rotation 
are treated differently. To interpolate any function from a set of finite number of 
points is always subject to numerical error, no matter how small. Hence, it is 
conceivable that the present calculation and the one by Chu et al. [3] produced 
different, albeit only very slightly, sets of interpolation formulas from the:same 
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potential U(R), resulting into a small disagreement between the calculated 
vibrational levels. In most cases, the potential energy U(R) is computed less 
densely at the range of R farther removed from the equilibrium distance. This, in 
turn, can lead to higher uncertainties in the interpolation and, consequently, to 
a greater deviation in the higher vibrational levels, as seen in Table 1. This ex- 
planation is also supported by previous calculations [7] which showed the matrix 
method to be most accurate where the potential energy curves are known in more 
detail. In contrast, the evaluation of the part [ J ( J+  1) -AZ]/2mR 2 by a simple 
substitution R = R ,  cannot introduce any additional error. Therefore, the rota- 
tional structure should be more easily reproducible by two independent calcula- 
tions. One can conclude from the above reasoning that the small discrepancy 
shown by these two calculations are probably due to the numerical errors in the 
interpolation of U(R) but not due to factors inherent to the methods. 

The vibrationally-averaged dipole moments given in Table 2 are surprisingly 
stable inspire of the drastic change of ~. Since the vibrational wavefunctions are 
expanded in terms of the harmonic oscillator eigenfunctions which are explicit 
functions of c~, one might expect the wavefunctions to vary with this parameter. 
On the contrary, the dipole moment function/~(R) is independent of c~. Hence, 
even a small phase shift of the wavefunction along the R-axis would likely become 
reflected in the average dipole moment. Not  to mention if the variation of c~ causes 
any change in the functional form of the wavefunctions. However, this situation 
is not seen except in the bottom row. Therefore, the excellent stability for v ~< 7 
should be inferred as an indication that the corresponding wavefunctions remain 
practically unchanged by the variation of e over this range. In other words, the 
choice of the parameter c~ is not crucial for the calculation described in this paper. 

Let Rma x represent the maximum of the set {R,} defined in Eq.(7). It has been 
pointed out [-5] that the HEG scheme is equivalent to the Gaussian quadrature, 
with the set {R, } serving in the procedure as nothing other than a set of unevenly 
spaced quadrature points. It follows that the scheme is responsible [10] only in 
the region of R spanned by Rmi n and Rma x. Outside this region, the accuracy of the 
scheme is entirely determined by the amenability of the functions, U(R) and g(R), 
to extrapolation. 

In the present calculation it is arbitrarily set R,=(R'ax+R~)c~-~/2. For the 
60-term basis set {q~,}, Rmax=-R~in~10a .u -  One can roughly estimate the 
value of Rma ~ and thus the region where the H E G  scheme is reliable, as a function 
of e. Now, according to the ab initio potential energy, the highest bound level 
v=8  has its larger of the classical turning points at R~4 .8  a.u. One can readily 
see that at c~=25, Rma x falls well short of this turning point. As c~ decreases, Rma x 

increases, becoming roughly comparable to 4.8 a.u. at e = 16. At smaller values 
of e the range extends farther down to the large R. As a result the energy and 
wavefunction of  this level change quite drastically as c~ is varied from e = 25 to 
c~= 12. Beyond the latter value these quantities become reasonably constant. 
This explains the fluctuation of the entries in the bottom row and also the deviation 
of the last entry for v = 7 from others in the same row. 

The transition moments listed in Table 3 involve both vibrational and 
rotational excitations: v--, v+Av, J = 0 . 5 - *  J--1.5.  Nonetheless, one also finds 
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these matrix elements to be very stat ionary against e, a l though over a narrower  
range o f  the parameter .  As in the averaged dipole moments ,  only those transitions 
involving the highest bound  level v = 8 are significantly affected, up  to 3~o, by the 
variat ion o f  e. All other  transit ion moments  change, to a m a x i m u m  of  a half  
percent when c~ is varied f rom e =  10.0 to e = 16.0. 

One can thus infer f rom Tables 2 and 3 that  as long as the value assumed for 
the parameter  e is not  as extreme as to severely limit the validity o f  the H E G  
scheme, the vibrational  wavefunct ions are remarkably  independent  o f  this 
parameter .  The need to search for the optimal value of  any nonlinear  parameters  
always hampers  the usefulness of  a computa t iona l  scheme: the narrower  is the 
range of  the opt imal  value so is the usefulness o f  the method.  The remarkable  
independence o f  the results displayed in these tables  thus ensures the facility of  
application. 

Since Chu et al. [3] published only two values f rom the results o f  their calcula- 
tion by the numerical  integration method,  compar i son  can be but very limited. 
Their reported vibrat ionally-averaged dipole moments  for the levels v = 0  and 
v = 1 are 0.738 and 0.774, respectively, as compared  to 0.738 and 0.775, also in the 
same order,  o f  the present calculation. Al though  limited, these figures are in line 
with the spectroscopic constants  shown in Table 1. 

It  is interesting to observe that  the behaviour  o f  the transit ion moments  
versus the initial vibrat ional  qua n t um  number  v in Table 3 shows a general 
resemblance with the similar ones o f  Mies [2]. The magni tude  o f  the momen t  
for the vibrational  fundamenta l  A v =  1 reaches a max imum at v = 2 ,  becomes 
nearly zero at v = 5 before it changes sign and increases very rapidly towards the 
vibrat ional  cont inuum. 
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